Beta-cell replacement for type I diabetes.
نویسندگان
چکیده
The ability to achieve insulin independence with either solid-organ pancreas or islet transplantation has increased the number of patients seeking beta-cell replacement as an alternative to insulin therapy. Despite dramatic improvements in the ability to achieve insulin independence following solid-organ pancreas transplantation, the secondary complications of long-standing diabetes are frequently irreversible by the time surgical intervention is justified based on the risk of this procedure. Pancreatic islet transplantation provides a safer and less invasive alternative for beta-cell replacement that could be justified earlier in the course of diabetes to prevent the development of secondary complications. Recent advances in the technology of islet isolation, as well as the ability to prevent the alloimmune and recurrent autoimmune response following islet transplantation with immunosuppressive regimens that are not toxic to beta cells, have rekindled an interest in this field. Widespread application of islet transplantation will depend on further improvements in selective immunosuppression, development of immunologic tolerance, and finding new sources of beta cells.
منابع مشابه
Increased Expression of TRAIL and Its Receptors on Peripheral T-Cells in Type 1 Diabetic Patients
Background: Type-I diabetes is an autoimmune inflammatory disease in which pancreatic ß-cells are selectively destroyed by infiltrating cells. TNF-related apoptosis-inducing ligand (TRAIL) is a type-II membrane protein of the TNF superfamily which is expressed in different tissues, including pancreas and lymphocytes. In humans, TRAIL interacts with four membrane receptors. TRAIL-R1 and TRAIL-R2...
متن کاملBeta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice
Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40- 50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-ste...
متن کاملIslet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes
Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...
متن کاملEffects of Aerobic Training on mTORC1 Gene Expression in Male Wistar Rats with Type 2 Diabetes
Objective: Although type 2 diabetes is a multifactorial illness, one of the major risk factors is the prevalence of obesity.In this context, recent genetic studies on diabetics or pre-diabetics, have shown that some of the newly-known genes make the conditions for type 2 diabetes even in the absence of obesity. One of these genes is called mTORC1, which plays an important role in the synt...
متن کاملToward beta cell replacement for diabetes.
The discovery of insulin more than 90 years ago introduced a life-saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual review of medicine
دوره 55 شماره
صفحات -
تاریخ انتشار 2004